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1. Introduction

The elastic, piezoelectric and dielectric constants of quartz and

their behavior with temperature have a significant influence on the

frequency characteristics of various quartz devices and their variation

with temperature. Clearly, the more ac,2ritely these quantities are

known, the more precisely quartz device structures and their orientations

can be described. The increased precision can provide advantages in both

the design of and improvement in the characteristics of resonant quartz

devices. At the present time the values of the elastic, piezoelectric and

Idielectric constants are those of Bechmann at 25°C and the temperature

derivatives of the elastic constants that are used are those of Bechmann,

Ballato and Lukaszek. The accuracy of the coefficients currently in use

has been subject to question, in particular by Kahan , who made a

statistical comparison of the best measured data available with calcula-

tions based on different sets of material coefficients and concluded that

the material coefficients and their temperature derivatives should be

redetermined.

Before proceeding, it is important to note that since te existing

temperature derivatives of the elastic constants of quartz were eva.luatei

from the data using the linear theory of elasticity, which can only be

referred to the temperature dependent intermediate position of the plate,

they are the temperature derivatives of certain effective coefficients

rather than the fundamental constants, which are referred to a fixed

reference position at one temperature. As a consequence of this, the

first temperature derivatives of the fundamental elastic constants of

4quartz were subsequently obtained from the data in Ref.2 within the



framework of the proper rotationally invariant nonlinear thermoelastic

description, in which the vibration is treated as a small linear dynamic

field superposed on the thermally induced static biasing state and referred

to the temperature-independent reference position of the plate. Since the

vibration is referred to reference coordinates, the mass density and plate

thickness are constants independent of temperature and the normal to the

major surfaces of the plate does not change its direction with respect to

the principal axes of the quartz crystal with temperature. Since in

quartz the principal axes only extend and contract with temperature and

all others skew, the actual normal tn the intermediate position of the

surfaces of the plate changes with temperature. This change in normal

(or skewing of the axes) was neglected in Ref. 2, which uses the linear

description referred to the intermediate coordinates. This is the primary

reason that the nonlinear description, which permits everything to be

referred to the unchanged reference coordinates, has a significant

advantage over the commonly used linear description. However, in the

determination of the first temperature derivatives of the fundamental

elastic constants in Ref.4 only the elastic (and not the piezoelectric)

solution was used in obtaining the temperature derivatives from the data

and the temperature derivatives of the piezoelectric and dielectric

constants were expressly ignored. Furthermore, the (rather thick) elec-

trodes on the quartz plates used in the measurements were ignored in the

treatment, as in Ref.2. This is probably the major source of inaccuracy

in the existing coefficients.
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The vibration solution alluded to in the previous discussion is the

5
pure thickness solution , which ignores the transverse mode shape due to

the finite dimensions of the electrodes and/or the quartz plate. This

procedure is reasonable in the case of thermally uncompensated cuts because

the influence of the transverse mode shape is small compared to that of

the thickness behavior. However, in the case of thermally compensated

cuts such as, e.g., the AT and SC cuts, which are the most .'iu"rtant in

practice, the transverse modal behavior is of crucial importance in

determining the variation in frequency with temperature because for those

cuts the change in frequency with temperature for the pure thickness mode

of interest vanishes. Furthermore, the temperature dependence of the

motional capacitiive effect of the driving electrodes on the quartz plate,

which depends on the temperature derivatives of the pertinent piezoelectric

and dielectric constants for the thickness mode of interest, causes the

well-known apparent shift in angle 6 of the zero temperature cut elcctroded

quartz plate. In a calculation of the temperature dependence of the

resonant frequency of contoured AT-cut quartz plates , the temperature

dependence of the motional capacitive effect of the thickness mode of

interest had to be estimated from temperature measurements on AT-cut quartz

trapped energy resonators with large electrodes because the temperature

derivatives of the piezoelectric and dielectric tensors are not presently

known. In addition, because of the inaccuracies in the first temperature

derivatives of the fundamental elastic constants the calculated rotation

angle of the zero temperature AT-cut unelectroded flat plate is -35o15',

which is referred to as nominal because the rotation angle of the actual

cut is about -35 21'. The difference of 6' is primarily a result of the

5



inaccuracy caused by the electrodes that were on the plates when the

measurements were made and were not considered in the accompanying

94
analyses2 Similarly, in the case of the doubly-rotated SC-cut quartz

plate using the same 6' correction to the 8-angle, we have found8 with

the aid of a measurement by Warner 9 that the required correction to the

p-angle is about 48', which is quite a bit larger than the required

correction to the 6-angle. The greater error in the z-angle is not

i0
surprising because it relies on data obtained from the measurement of

doubly-rotated cuts. Furthermore, as in the case of the AT-cut, the

motional capacitive effect due to the driving electrodes on the SC-cut

cannot be calculated because the temperature derivatives of the piezo-

electric and dielectric constants are not presently known. Again the

effect has been estimated8 from measurements by Lukaszek on that

particular cut. However, it is clearly undesirable to perform such

measurements on every zero temperature cut, and the error in the :-angle

borders on the intolerable.

In view of the existing situation, the elastic piezoelectric and

dielectric constants of quartz and their first four temperature deriva-

tives are being redetermined at a fixed reference temperature of 250 C.

In the earlier determination I of the elastic, piezoelectric and dielectric

constants of quartz only thickness-excitation of thickness vibrations was

employed along with a judicious use of rods and contour modes of plates

and the then existing state of analytical knowledge. As a consequence,

only the elastic constants c1 1 and c6 6 could be determined from unrotated

cuts and the others had to be determined from some singly- and some

doubly-rotated cuts with an attendant loss in accuracy. Under this program

6



both thickness-excitation and lateral-excitation of thickness vibrations

are being employed. This should result in a significant increase in

accuracy.

in order to determine the material constants from measurements of

thickness resonances an analysis of an arbitrarily oriented quartz plate

driven into thickness vibrations by either thickness-excitation or lateral

field excitation has been performed. For the case of thickness-excitation

the analysis is restricted to orientations for which the three-coupled

5
waves essentially uncouple and one dominatao the vibration. This holds

for all orientations except those12 for which 0 < - < - 15. and +22'a <30

For the case of lateral excitation this restriction on orientation holds

even though the waves are not coupled because they are almost degenerate.

The analysis reveals that the four constants c 11 c 44 c14 and c6 6 can be

determined from measurements on the three unrotated cuts and that the

remaining two constants c33 and c13 can be determined from measurements

on rotated Y-cucs. Consequently, no doubly-rotaLed orientations are

required for the determination of the constants. Clearly, this should

result in a significant increase in accuracy both because of the simpler

orientation and the increased directness of the equations. Since the

piezoelectric constants are being determined from the measurement of

13
successive thickness overtone resonances 1 they should be more accurare

than in the earlier work which used antiresonance measurements. the

interpretation of which requires a great deal of insiaht. The dielectric

constants are als;o being determined from the same measurements of over-

tone thickness resonances.



In order to determine the temperature derivatives of the effective

material constants e perturbation analysis of the temperature dependence

of the resonant frequencies of arbitrarily oriented quartz plates vibrating

in pure thickness modes has been performed. Since as already noted a

14
proper rotationally invariant nonlinear description , which enables the

equations to be referred to a fixed reference position at a fixed reference

temperature T is being employed, the geometry and density do not change.

As a consequence, the rotation of the plate normal with respect to the

crystal axes accompanying a temperature change, which is a result of the

anisotropy and was ignored in earlier work , is automatically inclided

here. In the description we employ the changes in the effective elastic

and piezoelectric constants have less symmetry than the fundamental

elastic and piezoelectric constants. As a result, in the general aniso-

tropic case there are 45 independent changes in the effective elastic

constants and 27 independent changes in the effective piezoelectric

constants as compared to 21 independent elastic constants and 1 inde-

pendent piezoelectric constants. In the case of quartz there are ten

independent changes in the effective elastic constants and four independent

changes in the effective piezoelectric constants, as compared to six

independent elastic constants and two independent piezoelectric constants.

Since under this program laterial field excitation is being employed

in addition to thickness excitation, no doubly-rotated orientations are

required for the determination of the temperature derivatives of the

effective elastic constants even though a larger number of coefficients is

2
to be determined than heretofore 2

. Since the piezoelectric coupling is

small in quartz, the changes in the piezoelectric and dielectric constants

cannot be ound ith, accurac; . . the measurement -f -,.e change in thicknes=

i I I I I I IS



resonant frequency with temperature of uncompensated cuts. The changes in the

effective piezoelectric and dielectric constants can be accurately deter-

mined from the measurement of the temperature dependence of the resonant

frequencies of the fundamental or harmonic overtone trapped enerzv modes

in compensated cuts, such as AT, SC and BT cuts. Clearly, the changes in

the ten effective elastic constants can readily be determined from data on

the temperature dependence of the thickness resonant trequenci.-'s of the

uncompensated cuts. In particular, five can be determined Lrom tao

15
unrotated cuts and four can be determined from the one rotatod '-cut

that is needed for the determination of c 13 and c One additional :ut

consisting of a rotation about Z. preferably of about S-, is roouirec :o

obtain the rpmainig one.

Since trapping of all modes will be employed to eliminate coupiin4

to unwanted effects, all coefficients determined from the pure thickness

analysis will subsequently be refined by successive iteration usin-, ta

16
analysis for the trapped .,nergy resonator Finally, redunant cihec.-s

will be made using other orientations and overtones, including, of cure

the thermally compensated cuts.

2. 3asic Eauations

The linear electroelastic equations for small Fields suDerposed on

a bias, which are required in this work, may be written in the form

=e f 0 "IN
KL =-7L, L

where

-n2 nN=L' kLv ~ v 'L L'

. . . . I I P '



and

K C U e u 3)
Lv 'L.Ma uM_ + eL,M' aML 14v vM -LM M ' "

H = MG -'U " 1RM'u_, _ -lM -. 14 4

Equations (2.1) constitute the stress equations of motion and charge

equation of electrostatics referred to the reference coordinates of

material points at the reference temperature T i.e before the stat:"

deformation resulting from cne change in temperature to T occurs, which

are called reference coordinates and are denoted ,M. In Eqs. ".1) and

(2.2) K,, D, and u. denote the components of the small field Piola-

Kirchhoff stress tensor which is asymmetric, the reference electric

displacement vector and dynamic portion ot the mechanical displacement

vector, respectively, and z denotes the reference mass density. In (2.2)

for convenience we have written both KL and -L as the sum of a linear

dynamic part and _' and a nonlinear static part and The lineardynamicL- pr -Lv - "

dynamic portions and .4 are the ordinary symmetric mechanical stress

tent;or and electric displacement vector of linear oiezoelectricity and are

given by the usual linear piezoelectric constitutive relations in (2.3),

where denotes the linear dynamic electric potential. The quantities

CLM. eML and M denote the second order elastic, piezoelectric and

dielectric constants, respectively. The nonlinpar static auantities

and _L in (2.2) and (2.4) are the portions of the asymmetric Piola-

Kirchhoff stress tensor and reference electric displacement vector resultingz

frcn the piezoelectric vibracion in the presence of the biasing state

caused by the temperature change (T- T ).

LOt0
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The symbols -GL M, NRML- and ALM denote changes in effective

material quantities, which can be expressed in terms of fundamental

material constants as shown in previous work4 ' 14 " i 7  However, since

temperature derivatives of the material constants higher than the first

are to be determined in this work, it is not feasible to try to find the

temperature derivatives of the fundamental material constants here beg -use

the required higher order fundamental material constants _f quartz ar._

not presently known and would be prohibitively costly to evalate. nq-

quently, we take the alternative course of evaluatinc the chances Ln -_.2

effective material constants iG Lc - - in this ..;ork, m.er._

n= dT T=T
0

Before discussing the symmetries of the G and

indicial notatioo employed in Eqs..i) - 2 4.) -. e -insider it ldvie aD

for clarity to briefly outline the nature of the deformation tnat must >2

accounted for in the description. At the reference temperature ctoe

points of the body are denoted by the reference coordinates X . ,hen the

temperature is changed from T to T the points of the body move to new0

positions, which are called intermediate coordinates and are denoted by -

where X . Clearly, the static displacement w may be denoted

w = -- . Then the body is vibrating at some temperature T, the DoinLs Ot

the body movc from to the present position y,., where v =

H - t = v (Xi t) . Clearly, the dynamic displacement , i mav be

denoted u = y a a we have y X= ' - .,7 + u. At this point it is ilso

purnoseful to iore th. t if at the reference tmpernture T 1 'Moint ,,n the
0



surface of the body has unit outward normal NL relative to the principal

axes of the crystal, when the temperature is changed to T that same point

has a different unit outward normal v relative to the principal axes ofcl

the crystal. In the earlier work on the temperature derivatives of the

elastic constants, which was based on the linear theory, the equations

could be referred only to what are here called the L-- coordinates and the

difference between v and N was ignored. Since all geometric measurements

are made at the reference temperature T and when the equations are

referred to the KL coordinates, the density, thickness and surface

normal N never change, it is clearly qignificantly advantageous to use

this dzzcription both for simplicity and accuracy.

The aforementioned use of reference coordinates is the reason that

the effective constants GL y and RML v have less sy-mmetry than the funda-

mental elastic and piezoelectric constants c M. and eML . respectively.
2L,,~ eM,

Although the CLM admit interchanges on each pair of indices, the 0L.

have only the svmm, :v

GLyM = G , T (2. )

and RML have no symmetry. Consequ-n, ly, in the general Anisotroplc ase

there are 45 independent effective GLvMC and 27 independent effective ML%

whereas there are 21 independent S and 18 independent The

discussion in the above paragraph also makes clear the reason for the

mixed notation of capital latin and lower case greek indices. Although

this can be eliminated on the CLVMc, and eML in Eqs.2.3 , it should rot

be eliminated on the GLyMO! and RMLt, in Eqs.(2.4) because it emphasizes

the Lack of symmetry. Consequently, we retain the mixed notation, which

1.2



is consistent with the notation of Refs.4, 14 and 17, throughout. The

cycles above variables have been introduced for consistency with Refs.14

and 17. We have employed Cartesian tensor notation and vector notation

interchangeably and the convention that a comma followed by an index

denotes partial differentiation with respect to a reference coordinate,

the dot notation for differentiation with respect to time and the summation

convention for repeated tensor indices.

Since the quantities referred to as nonlinear are static, from '2.1)

and (2.2) we obtain the dynamic linear stress equations of motion and

charge equation of electrostatics in the form

o,' 0LL 2.7)

which with the linear constitutive relations (2.3) yield the usual equations

of linear piezoelectricity. We further need the matrices of the elastic

piezoelectric and dielectric constants of quartz referred to the princio

axes of the crystal, which is in class 32. These matrices may be written

is
in the form

c c c 0 01!c2 13  c14

c12 11 c -c14 0 0

c = 13 c13 C 33 0 0 0

Pq c14 -c 1 4  0 c,, 0 0

0 0 0 0 c44 c14

0 0 0 0 c14 c c 6 6 =-(c c )'
6 66



e -e 0 e1 4 0 0

ip 0 0 0 -e 1 4  -e1 1

0 0 0 0 0 0

1 0 0

5 .. = 0 =- I 0
j 

0

-33

19

in which we have employed the conventional compressed notation

The equation for the perturbation in eigenfrequency obtained from

the perturbation analysis may be written in the form

H =H /2 , ' = u It, (2.9)

where u. and u are the unperturbed and perturbed eigenfrequencies.

respectively, and

[' G +6Ag-- fI I dV (2.10)L_= L',f R~, M~vL -- ,,M , M -

V
0

The vector gv denotes the normalized mechanical displacement of the ath

unperturbed mode and ft denotes the normalized electric potential for the

.th mode, i.e.,

9 u-I/N ,f" / (2.11)

where

IN = u 'udV (2.12)

V
0

14



In (2.11) and (2.12) uL and represent the mechanical displacement and

electric potential, respectively, of the uth eigensolution of (2.7) with

(2.3) subject to the appropriate boundary conditions.

Since Eq. (2.10) contains AGL.M J ARML, and ACLM, we need the

matrices of these quantities referred to the principal axes of the quartz.

Since ;a = C-LI the matrix for CIM is the same as the matrix for eL1M given

in (2.8) However, beforewewrite the matrices for the G L,/Mand \ILy', we

must introduce a convention for a larger range compressed notation than

the one commonlv employed because of the reduced symmetry on GL!Vm and ".L,

compared with L.M and eMLv respectively. To this end we introduce the

20
convention shown in Table I. Then, using results of Mindlin tor matrices

having these symmetries for quartz, we obtain the required matrices in the

form

G G G G 0 0 GI7 0 0
11 12 13 14 1

G!  GI GI -GI 0 0 -C1'
G 12 G 11 13 G14 17 1

GI3 G 13 0 0 0 0 0 0)

G -G!4 0 G44 0 0 47 0 0

G -
pq 0 0 0 0 G,, G ) G , C7 17 14 67

0 07 0 0 G 69

G -G17 0 G47 0 0 G55 0 0

0 0 0 0 G47 G4 0 G 4 l1

0 0 0 0 GI7 G69 0 G4 G66

G66 69 11 G 12'

L5



R R R 0 0 0 0
11 14 1-7

RMP 0 0 0 0 R7 -R11  1RI4 1

0 0 0 0 0 R 0 0 -R 3 636 3

3. Pure Thickness Vibrations

;e first consider Lateral excitation .f thickness vibrations ecause

in that case the major surfaces of the plate are unelectroded :n :he I-cILi:

of the mode and, consequently° the three waves are ,xacrly !uncouoled it -he

surfaces at resonance in the -eneral anisotrootc case. To -his end at -he

reference temperature T 7e locate the origin of coorainates ac -he cant_,er
0

of the plate of thickness 2h, with the X 3-coordinate directed along the

trigonal axis and the X-coordinate directed along a digonal axis. We denote
the unit normal to the top major surface of the plate at T by N._. Te

0

plate is driven into thickness vibration by an eiectrfc :ield of magnitudo

i wt
E which at temperature r is directed along the unit vector S.. in

noma to N otaNtstsf

the plane of the plate and, hence, normal to N so that it satisfies
NKS K = 0 t3.1)

but is otherwise arbitrary. Now, substituting from (,2.3) into (2.7). we

obtain

CLvM U ,MI + eML L =

LMVU ML LM' ML

which constitute the four coupled equations of linear piezoelectricitv in

u and and where we have taken the liberty of omitting the lower script 2

Ib

• ' | i l l L



on cLvMa. Since the major surfaces of the plate are traction-free, we

have the boundary conditions

N ( (33)

NLKLy=0

and since the electric field in space vanishes at NLXL ± and we are

concerned with the thickness solution, we effectively have the electrical

boundary condition

NL. L( ) = 0 (3.4)L L

on the major surfaces of the plate. The substitution of (2.3) into (3.3)

and (3.4) yields

NL(cLVM U M + eMLv ,M) = 0

IVe.M ) = 0 at X -h (3.5)

As a solution satisfying the differential equations (3.2) and

o iut
boundary conditions (3.5) with a driving electric field E S,e we take

N

=A sin -N elu 4_,-B sin NX. +E(SK -rNKXK ] ei~t (3.6)

where

r N K e M INR RS N S (3.7)

and is required to assure satisfaction of the boundary condition (3.5),.

The solution in (3.6) satisfies (3.2) provided

(Z7V - C5Y 1 ) A0 = 0, (3.8)

B = NLNMeI2YAI/NKNReKR (3.9)

where

17



29

"+ = (3.10)

and we have introduced the notation

c = NL cLvMu, e = N R NSeRSY N (3. 1)

which is convenient in this work and has nothing to do with the compressed

(pq) notation in Section 2. Equations (3.8) constitute three homogeneous

linear algebraic equations in the A and the condition for a nontrivial

solution yields

¢ -c =0 (3.12)

Equation (3.12) is a cubic in 7, which for a given NL yields three real
• 21 ((n

positive21 7n) (n = 1,2,3), which we assume to be distinct. Each E ( n )

yields amplitude ratios

A (n) : A(n) : A (n) (3.13)
A1  A2  3A ,(.3

when substituted in any two of the three equations in (3.8), where the A,

satisfy the crthogonality relations

(L)A(v') 2A A N (5) (3. 4)

and N is the normalization factor. Defining the normalized amplitude

ratios by

(6) =A(4)/N (3. 15
2

we obtain the orthogonal matrix S . The substitution of the solution

functions (3.6) with (3.7) into the boundary conditions (3.5) yields

18



7 A cos ,h + e E 0. (3.16)

and (3.5)9 is satisfied identically by virtue of (3.9), where

e NSeMLv r.. (1.17)

From (3.16) we see that the exact condition for pure thickness resonanrp

under Lateral field excitation is

cos -h = 0 or .n712, n i,3,5.......

With the aid of the orthogonalitv; of the w, may write :3.1ob in

a particularly illuminating form, in which each thickness moue is uncoupled,

simply by referring the equations to the coordinate system :cnsisting of

the eigenvector triad. Although the form is not of great use to us in

this case of L:teral excitation, it is important in the case of thickness

exc:tation, which is created next. To this end we -:ransform (3.16) to

the ei.envector triad with and write

A I A 01,A( 4 A (31A

and substitute from (3.19)9 into (3.16) and employ (3.8) for the normalized

eigenvectors 3 ) and make use of the orthogonality of the 3 to obtain

V(A cos h + 3 e'E ° = 0 (3.20)

which constitute three uncoupled equations (one for each v) giving the

amplitude A in terms of the driving amplitude E .

in the case of thickness excitation, which we now treat, we still

have the differential equations (3.2) and the boundary conditions 13.3).

but instead ot ,3. we have

L9



V i't=7 e at NLXL h . (3. 21)

On account of this, although the solution for u is still of the form shown

in (3.6)1, the solution for now takes the form

L sin 7NKXK + \C D NKX', e .
3.22)

These solution functions satiszv the same dif:erentiaL equations,

(3.2). as in the case of lateral excitacion because zhe expression Zor

in (3.22) differs from the one in (3.6), only by tems linear fn x.

Conseauently, Eqs.(3.8) - (3.15) still hold for the case of thickness

excitation. Now, substituting from (3.22) into -'I', ind emrloving (3. i',

we obtain

C - (e A /-h)sin h (3.23)

As noted in the Introduction, for the case of thickness excitation -he

analysis is restricted to orientations for wnich the three couoiLd waves

at the conducting surfaces of the plate essentially uncouole and one

approximately, but very accurately, dominates each uncoupled vibration.

Under these circumstances only that component of the traction 'ector La

the direction of the eigenvector of the dominant wave need be considered

at a time. The successive consideratioal of the three distinct eizen-

directions yields the three approximate, but very accurate, uncoupled

solutions. To this end we substitute from (3.6) , 3.22) and t3.23)

into (3.5),, which is equivaient to 3.3), and transform (3_5) with

and substitute from (3.19), and employ (3.8) for the normalized eigen-

vectors and the orthogonality of the f to obtain

.1'



e Ij e I

VL ,(V) Cos 7(v)h - - sin .(v)hij 2 3 324

where

e 3. 25)

Equations (3.24) are the uncoupled equations, one for each v ('
= ,,2.

which give the amplitude A for the vth pure thickness mode in Errms of :ne

drivin vtage V. From (3.24) we obtain the condition for resonance of

the ,;ch mode in the form

)

tan h = 7 b/k 3.26)
(V) (V) V'

where

2 2k V V) /c . 3.27)

The forms shown in Eqs.(3.24) and (3.26) were obtained because for

convenience the mass loading due to the finite thickness of the electrodes

was i-iored in Eqs.(3.3) and (3 5)i• if the mass loading had Leen included.

in place of (3.26) we would have obtained 
2 2

'23

tan (v)h h/(k-+R7 h-) (3.29)
(V) V (V)

where R = 2z'h'/c h and z' and 2h'denote the mass density and thickness of
0 Q 0

an electrode, respectively. Since the piezoelectric coupling is small in

quartz, the usual expansion of (3.29) about Ih = n-/2 (n= 1. 3. 3,
)'

with che aid of (3.10), yields - -

n-T (I - 4(3.30)
n 2h 2 R 2

0 n -T



from which we readily obtain

(U3 - 3w )/3w = 32 k/9 " (3.31)3 1 o

to order k- and where for small coupling

( i2h)(c(v)/ 1/2 (v) -(v)(1 2

c= l( ) , c ( - k 22) (3.32)0 0 V "

Equation (3.31), with (3.32)1, is useful for obtaining the piezoelectric

constants from measurements of the fundamental anAd third overtone thickness

excited thickness resonances.

In order to use the foregoing general anisotropic results for pure

thickness resonances to evaluate the material constants from data at

T = 25"C, we must consider various specific orientations of quartz. To

24-
this end we introduce the conventional IEEE notation for doubly-rotated

cuts of quartz and write (Y, X, w, .,3, which yields the relations

1 -cos sin, N, = cos 9 cos N = sin
coos3cs , sn3 (3.33)

for the components of the normal to the major surfaces of Lile plate at T
n

in terms of the rotation angles z: and 6. In particular, we need the

expression for c.ey, , e 1 and F for doubly-rotated cuts of quartz.
V Va

With the aid of (3.11), (3.17) and (3.10)1 and the matrices in (2.8), we

obtain

N~c ++~ -2N~c + Nc
C N1NICl1 + N 22 66 2 3 14 3 3 44
c I  N NN(Cl +c 66) + 2Nc c = NINc +NIN3(C +c4
.. 1..4 3 14 1

c N NIC 66 + N2NIC11 " 2NIN3c14 + N3N3c44

c 2 3  INIc4 2C 14 +NN3 (c13 c44

c = NNc + N. Noc +N3Nc (3.34)
I 1, 1 44 3 333'

22*



el N Nle l NNe - N2NeI
..1 11 Y11 23 14'

'-2NN2 ell + N Ne e3 =30 3.5
11 13 14'7

\1 N + N N., I N 3 -"3
' ~- MM SN~ l -~.~ INN - , -W _

el SI~el - 1Y1I _ - ii _ _ 3* 33i

S NS '4 N e - SN N ' '" e

-31 - " - *- -- - *-. - -

C ] '2 . d ,, - - . - . ..

C = _- -2 ' J 3

whichi with the roots of c ot o3.'
l readil'v enables ,as 1,o ? -. -,,

relations wo nee,- for an'- ]r~enEgti;n w4e w.1in. t2 IOW ."ato l:ni inct .

i.S not :hat Aiffarcntfrom -'3 2- in " , IInaL~o r: _' l__n

<3'

tions and is ignored from -ere an in this work.

Since for the X-cut = -/2, a= 0, from (3.33) for the X-cut we nave

N . N N = (-1 , '.)'13_. 0

which with .3' - (3 37) and ,3.29) ;iolds

011 =01= 0 c , c , = . =2 . .. =0 , .

el -' i' " 13 22 = b ' 0 3 -1' 23

- :

.111 Li- - - no' - 17 1v " 3 - -

I I II I I I I



The substi4tution of (3.4-3) inlto (3.3) yields the two uncour)Ied ;vsterns

1O214 3 14244 "

the first of which wields

wit"I umDLLuce.

Thich, is a Quadratic equatwnr yie Iding zthe twodc roots a nu -.I[;

amplitude ratios

ra -m 7 'n we obtcain Lh tw.,o rolat~ons

c cc C, 13. 9)-C

wrlr( ,rve -to beusepi LUI:n orK utin ;. revea 1 "-,atr.

the X,-cut plate w.e have thickne ss (X) oxc trLation or tno ~e~ rC~I

,tZ:ne xtens~lcnal 7iOde inc 1atcrtil Y 'xc:rat,--n rL :mt)h u r 1% -~is:

shtoar modies ,;hichl Ire 2uOla

~'r -lie '{ ;,2 :havek

I *~ N



which with (3.3-4) - (3.37) and (3.39) yields

11 1- 13 1P -3 14, '33

0C e'c C' CS ' (3.33)
L 1  c16 i 2 II ill 12 311 3 313

The substitution 4 (3.53) inco (3.8) vields che tPwO 'JfCOUO)Lecl .t --M S

-)A =' C -)A- \

the first of v~hc ields

with amplitudes

E qua tions 3. yiel d

-hich is a quadri ic oqruation vie 1din; the two r i)t; C mc

ampl'itude rat,.,,,

n( (l n) - nl.

?--rom Eo13~ wj -b)t-ifl tlhe two relations

II 1 I



which are useful in this work. Equations (3.52) reveal that for the Y-cut

plate we have thickness (Y) excitation of the piezoelectrically stiffened

(X) shear mode and lateral (X) excitation of the other two purely elastic

coupled shear and extensional modes.

For the Z-cut we have

(N1 , N2, N3) = (0,0,1) , (3.60)

which with (3.34)- 3.37) and (3.39) yields

= = 0, C 0, = =0Z C= C 131 c14. 2 0 c!3 0 c13 c44 2 3  D 33 c33

.... - , 0 '
= =0 -" eQ= e =S =0

133 1 14'

" c (3.63)

The substitution of (3.63) with (3.61) into (3.8) yields the three uncoupled

equations

C=~ C -74 A = 0, ~c -)A3 0 (.4

c.C,, -J) =  
- 33 A

which yield

) (2) C (3) C3.5)

' = 4 " . 4 4 ,  3 3 =3 .63 ,

along .iith the matrix of amplitude ratios

A = 1 0

0 1. 3. tobi"

26



Equations (3.62) reveal that for the Z-cut plate we do not have thickness

excitation of any modes and we have lateral (X) excitation of -shear only.

Since the analysis for the rotated X-cut yields no significant

simplification over the analysis for the doubly-rotated plate, we do not

present the results for this case here. We simply note that all three

coupled modes can be driven by both thickness and lateral 2xcitations.

7or the rctated Y-cut we have

N.,M~.MJ , s 9, 3sin * . 7)

which with (3.34, - 3.37) ana (3.39) vields

c c 6 'sc,. - - J, '] - =

_ c2 csc s C C, c C14 3cc I->I14 $-3
f- 2

-- s..3..58

33 c C 44 sc 33!

/ = - 21e ; , -,e = -:" ; ' = -  " . 3 .a

M1 = 1* '-: ' ) - = " - = - _33
(1.70)

in which c and s represent Zos and sin , respectively. The ubstitution

of 13.70) into (3.3) yields :he two uncoupLed ystems

K ,, . -) A ) "\ ,0  
(c -- ')  A.. -c v3 =') .

I c - , \ '). 3." 7l-33'
_ 33 7)...

first c) f which ''ls

. . .. .- I IP -'



with amplitudes

4AI  , A, A = tl,) . 3.73)

Equations (3.71), 3 yield

c (c +c 3 ) c ,233 3 0 (3.74

which is a quadratic equation yielding the two roots c and

with amplitude ratios

,I ) (n= , ,)-)
A. A 23'

From 3.74) we have the two relations

_(2) (3) "- -(2)_(3) '-- _ -2c +c c = c 2 2 3 3 -C 3.76)

which are useful in this work. Equations (3.69) reveal that for the

rotated Y-cut olace we have thickness (rcati Y) excitation )f the

DiezoelectricaIlv stiffened '.X) thickness-shear mode ana lateral

,:) axcitation Df the other two purely elastic cUouled shear anu

extensional modes.

From the foregoing it is clear that all the elastic constants

can be determined from measurements using lateral excitation. First

c4 -an be determined from a 7-Cut, then c 1 can be determined from

a Y-cut and 66 from an X-cut and c1, from either a Y-cut or an X-cut.

Finally, both c, and c-, can be determined from one rotated Y-cut.

:t .3 also :iear that the oiezoelectr-c and iielectric constants :an

be determined from thickness excitation of the fundamental and third

harmonic of - Y--:ut or in ,-cut and three rotated Y-cuts.

:,3



We now present some of the results for a rotation about Z

even though they are not needed for the determination of the constants

at T = 25"C because one is needed for the determination of the
0

changes in one of the effective elastic constants. For a rotation

about Z we have

(NJ, N,, N (- sin T, cos z:, 0) , (3.77)

which with (3.34)- (3.37) and (3.39) yields

C 11 s-C 11 + c 6 6 , c12 sc(c 1 2 +c66

2 1c!3 c -c
=-13 12scc4 ,66 C 1

o 2 2
C 2 3  s C 1  C C 4'c =s C +Ch =C (3. 73)

- 1 141 33 44 44 44

-,- 2 -' ^ 9
e -e ce e 2sce e = s- +c E

e=-Sse -SICe -Sce
e I  -SlelS I l - $c1

e_ =-Sc e + Sse e SCC seell S 1 3.7
- 1 11 211 3 1 1414

1 ele 9Cl =Cl + - ,c c---' - C

1 1 - ' 12 12 I ' 13 13'

e
- =c - = C . 30

c 2 2 C22 11 ' 23 = _3' c33 33 (3.80)

Since the substitution of (3.80) into (3.8) yields no significant

simplification over the doubly-rotated plate, we do not present

the detailed expressions for the coupled linear equations, the 3 •3

determinant or the amplitude ratios for the plate rotated about Z.
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4. Perturbation of Thickness Vibrations

We first obtain the one-dimensional expression for the

perturbation integral H from the general three-dimensional expression

given in Eq.(2.10) because the one-dimensional version is directly

useful for the treatment of thickness vibrations discussed in

Section 3. To this end we write dV = A ds in Eqs.(2.10) and (2.12)

and then, since the pure thickness solution does not vary along the

surface of the plate, factor out the A from both expressions, which0

cancels out of the entire description by virtue of (2.11). Under

these circumstances the expressions for H and N take the respective

forms

h

H .VG g c, + - ds
L LvMa 2 Mv L 2 MtLg,/,M "-LM-,L ,Mj

-h

h

N u u ds (4.2). 0 , V V 0

-h

where

s= NKX (4.3)

Bv virtue of the one-dimensional rthickness i' 0 dependence, with0!
the aid of the chain rule of differentiation, we may write

uM= ( ,s)(a xM)= N' , s(4.4)

From (3.6), (3.22) and (4.3) we see that in the present notation the

thickness eigensolutions, i.e., with V = 0. can be written in the form

u,= A sin s° , -=B sin -s +Cs 04.5)
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where B is given by (3.9) and C is given by (3.23) for the case of

thickness excitation and C - 0 for the case of lateral excitation

i~ t
and we have suppressea the e

Substituting from (4.5) into (4.2) and performing the ince-

-ration. we obtain

N- hA' -A . (4.
0

Now. let

-I~N C~=3.N-IN 7)

then from (2.11), (4.4) (4.5) and (4.7). we obtain

.= cos -s N -(B cos s -C'," , LL

Now, substituting from (4.8) into (4.1), performing the integrations

and employing (4.7), (3.9), (3.11)2,3 and (3.23), we obtain

G - -f

for the electrodeu thickness excited plate. where

ze -. 4 L~ AM Iv

and since C = 0 for the unelectroded laterally excited plate, the

second expression in brackets vanishes, we obtain

'A --
( .1

for the unelectroded laterally excited plate.

In order to use the foregoing general anisotropic results for

thickness resonators to evaluate the temperature derivatives ot the

effective material constants GLyMot RT^ and -Lm from data. we must
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consider various specific orientations of quartz as in Section 3.

In ?articular. -;e need :he expressions for .'G, 'R and for

doubly-rotated cuts of quartz. With the aid of (4.10) and the

matrices in (2.13) and (2.8) we obtain3,

gGI= NINIAGII + N2 N2 AG6 6 + 2N2N3 A.GI 7 + NN&5
.G N N IG + N!N G + 2NN G +

11 12 U1 69 -. 3 17 33

-LG, = -N N _I G + N N .G + N N3  G1 7

.iG = N N.G + N N N N -- L . .

__66 ' 1 -23 17 33 '

23.G1 1 , NT NG i- __C."i 2 2 'NNG -G N G-3 14 14 _ 3" -3  • "

G3 N N G + N NG + N3N 3G

33 ~1 1 44 'P 4 3 3' 33'

'G66 + AG69 = AG - AG12' 2

_'R, N ,, _ N 'R, ' 4 LR -R

-N "NR + NI'13 R + NN,2R R_ = 0 4.13

l l2 11 1 3 17 L 3 36' J

NiJ-' + NN' +'- NN Ir 4,)

which with the results of Section 3 readily enables the determination

of the relations we need for any orientation we wish.

For X-cut quartz we have (3.40), which with (, .12)- (4.14)

yields

CI =0 G =I, ' =_G, ( ,'' -G3

-G11 1' 23 22 66' G 2 -1' G,

(4.13)

-R = ZR = "" =  :i

1 1'- J Z= 4lb



The substitution of (4.15) and (4.16) along with (3.46) into (4.9)

for the thickness (X) excited extensional mode yields

2
e e e11-12

11 I 1l 22 141

e a 

A

--- i + 32 fC1 (417)

111

The substitution of (4.15) and (4.16) along with (3.48) into (4.11)

for each of the laterally excited two coupled shear modes yields

H- G66 A f +G ,,cG -A+ A A3-A h 2, 3 (4.13)
6 6  2 +-1142 3 3 4 3 3-" (.3

For Y-cut quartz we have ('3.50), which with (4.12)- (4.14)

yields

.. =G G 0 G 0 "G G 'G =- AGI .1G = - GI

11 66' 12 13 I22 23 14' 33 4-

(4.19)

-RI R R, 0, 0= ).

The substitution of (4.19) and (4.20) along with (3.56) into (4.9)

for the th-ickness (Y) excited (X) shear mode yields

ell 2 i~ A A l,1 e ?-Ih 'R

L-"[_ 66 " l 1£'1R12 1

e 2 -4i -i
+ 11 2 (4.21)

The substitution of (4.19) and (4.20) along with (3.58) into (4.11)

for each of the laterally excited other two coupled modes yields

H- = r - -W - -- -

1 =. 2 A :A + 43 G , = 2,3 (4.22)
1 43 3-
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For Z-cut quartz we have (3.60), which with (4.12) - (4.14)

yields

AGI=AG 2G2=O, AG 0 AGY 0= G AG =0, AG = G11 55' 12 12 - 55' 23 33 33'

(4.23)

1 ,R = (4.)• - () "' A 33

Since for the Z-cut we have (X) excitation of Y) shear only, the

substitution of (4.23) and (4.24) along with (3.66) into (4.11

yields

HU =-G A -1h 4.5G5 5
A A ,? . ..

As in Section 3 and for the same reason, we do not specialize

the results fof the rotated X-cut. For the rotated Y-cut we have

(3.67), which with (4.12)- (4.14) yields

G +2scAG1 7 +st AG AGI  =0 AG = 0

1 c A'G6  liC I' +2 ' 1

AG22c-Gl 2cSGl7  55' AG23 cGi4

#c sG +c sG (4. 26)
13 47 = c3G3. 4 3-G3 3

R c 2 - c ,c A +S 3 (4-'

The substitution of (4.26) and (4.27) along with (3.73) into (4.9)

for the thickness (rotated Y) excitation of the (X) shear mode yields

"-2 -"2 ^i-i
e1  e '17 1e

Hf = -LAG- +2AR 1  - 1 1 i h 2A 1 -- 1-

(4.28)

The substitution of (4.26) and (4.2') along with (3.75) into (4.11)

for each of the laterally excited other two coupled modes yields
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U i-'- -- ,

+ 2-! _G A + AG"G n 2,3 't.29)
2Z22 2323 33Y 3

For a rotation about Z we have (3.77), which with (4.12)- '4.14)

yields

2
AG cs~ -,I -s C G -s c.G11 1+CAG6 6 ig 1..)2 - sta69

"G 2scAG.,. AG s g + _G'
-°3 U, 22 -66 _l

G2 G - G AG, - 'G . .0
-314 14' 33 --

ARR s> ec~R _R = 2scR,. A - A,

_k7' 2 R 3 L)

Since the substitution of (4.30) and '.31) into DI.9) )r -. i*

yields no significant simplification over the doubly-rotated plate,

e Uwe do not present the detailed expressions for H and H

From the foregoing it is clear that all 10 independent G. Ma

c-aa be determines from measurements of the temoerature dependencz .)f

the resonant frequencies of thickness vibration of the ,r:enatfons

considered in this iection. In particular /'G -G *G _G
11 4i~ 66

and AG-- can be determined from measurements of the three anrotated
DO

cuts. in addition, GT. AGG -G3 and AG, can be determined from
17' 47' 13 j3

the one rotated Y-cut 1 5 that is required for the determination ot

C 3 and c33. Then AG c an be determined from one cut consistin4 of

a rotation about Z and finally AG6 9 can be obtained from A2"*

which can also be used as a consistency condition for -he measurements.

Furthermore, RIII R17 aa1d 1R69 --an, in principle, be obtained,

along with - and from measurements of the temperature
~ll 33Y

:ependence of the resonant frauencies of the thickness ,LLratons
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of specific quartz plates, including at least one doubly-rotated

cut. which is required for 1R69. However, in practice this is not

possible on account of the small piezoelectric coupling in quartz,

which for most cuts causes the influence of these coefficients to be

masked by the influence of the LG I Nevertheless, these quanti-

ties can be obtained from measurements of thermally compensated cuts

such as the AT, BT and SC cuts (and others) because for these cuts

the influence of the pertinent MG vanishes. This Ls discusseu
Lvma

in the next section because the analysis including trappLng ;s

required on account of the accuracy needed to calculate these small

quantities. 7inally. it should be noted from f-.13) that _ cannot

be obtained from measurements of thickness resonance or iave any

influence on the behavior of any resonator vibrating in an essentially

thickness mode.

5. Traoned Enera-7 Resonator

In this section we briefly discuss the solution foi the tr. e

energy resonator with significant reference to previous .ork 10

because of its length. However, before we do this we must aiscuss

the fact that the solution for the trapped energy resonator Ls

referred to the plate axes as well as the orthogonal axes of Lhe

eigenvector triad of the pure thickness solution, while in the

previous sections of this work the coefficients are referred t the

Principal ixes of the cry/stal. When the conventional !EEE notation 4

discussed earlier is employed, the rotation angles 2 ano ', ire the

first two Euler angles which determine the orthogonal transformation a:

from the crystal axes to the plate axes, where the a Are iven dv
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cos .sin:; 0

aG -cos 9 sin cp cos s C sin 6 5.1)

sin 9 sin p -sI:_ V cos cos 9

Then the transformation relations for all the material tensors

employed in this work are given by

c a a a a C2 KN8 8 KL T4 LaYMo

/ I

e =a a a e = a
KIN KL NM 3-v U'4, KIN KL NM 11M'

'KN= aKLa ,aNM G

= aK~aN~avRT..M = " (

'N5 aKLa \NaFLMKN = a KLaNM LM

in which the primed quantities are referred to the plate axes. In

addition, since the displacement field is referred to the orthogonal

coordinates of the eigenvector triad, which is given by the orthoeonaL

transformation between the princioal -cxs -f the crystal and t !,

eizenvector triad in the preceding sections of this work ana is given

by the orthogonal transformation Q between the plate axes and the

eigenvector triad in Ref.16, we have

\ QV a • 5.3,

In this section we use the coordinate convention of Ref.16, whereby the

s axis defined earlier in this work is in the direction of the X,-

coordinate axis of this section and X and X3 lie in the plane of the

plate. We are now in a position to discuss the solution for the
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trapped energy resonator in relation to the measurement of the

constants.

It is shown in Ref.16 that the homogeneous form of the differ-

ential equation governing the transverse behavior of the nth odd

harmonic family of modes is given by

2-n --2n 2-n
u, I  a u I U1 1--- ^I l)'n X-n

Q r- 7 x Pn 4h- c u1 1 5.n X1  1 X

3

where

n j-n

= u1 iX, X3 , t) sin (nX,2h) 5 .

and Mn, Qn and P are given in Eqs.A74) of Ref.16, and from (78) of

Ref.16, we have

<(1) Al) 2 2 2
c' = c (1 - 8k /n-- - 2R) , (5.6

and

K 1  = .,c. - _=2 q '
i '0 0

in the notation of this work, where :' and 2h' denote the mass densit'.-
0

and thickness of an electrode. Equation (5.4) is for the electroded

region of the plate and holds for the unelectroded region provided

(1) ._ 1)
c is replaced by 7 If, as is sometimes the case in this work,

the trapping is produced by an insulating film instead of an electrode.

a in (5.4) is replaced by c where

d = c (i1- 2R), 5.

and R is for the insulating film rather than an electrode. We now

take the arbitrary course of neglecting Qn in (5.4) in order to
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elIiminate the mixed ierivative corm. Thiis is_ neces3L~r-; -n ra

oermit aconvenient roepresentation cr ::he tranppec 27neri .e o::r 7

arbitrary orientation of the rectangular electrodes )r _~ltn

films, which are beirig employed in -he *xperiments pe. er:cr~u'I.

.tcan be shown thatc this procedure ioes niot rosi t L ii ) CLI

error except Ln certain unusual c:ases that -.4ill -io irt> c,

~t ias oeen shown In Sect*. c e:. c t:.at Ir :c.i

eiectrodes .)f Ien_,th Lalon ; -ia _'b *1_n_ ui

:rapped LUC~z i1 ~n-~tton --Dr nv -i --an 'De .r~t*'-

u1 3 si 0 s

1 3b

3-3

where S , T and C represent the electroded. side. top and corner

r egions, -.osrec:rivelv. -)f the nos~tl i'O juacranc Ln icc )r:i.n,

Figure 3 of Rer.16, the e h-t as been 5u1ppressecl inc

3 3 cos 7,,. 3 3 :s . 37 3 _ :- A

The transcendentaL f r pu e ncy ?quati~ns -Lor rioh trappecu *n,,rzv

3oLution -iiv Ice writt-,n in the i-orm

tan Ts. ' tan F~



where

S /K kn 1/2 T k (n >
n _a

and

(21 n

and the ei zenfrreuenc:. -, an be 4:e rminned -:rom tr-e i'isoeirsc.',n a-(ua-

--ion :or croe *s:croeareion, -wnhi takes -rhe crM.

aria, as noteu, _arler. te or Lasu~jctrig :-ilms ri s tau I ~eccrode~s

is Do e r-p Lace'd 'DV C

Since the main purpose, although not the only purpose, of

this section is for the determination of the temperaturt- diepenoence

fr the ffr-e f bezoe tectric ana iiv lec tri2 cons tants trom measura-

men'.s of araL~ comoensated cut3, L: t s Lmportanc to -iote2 Eha un

addition to l_-:nicn ippears in the iexpressions --,r t-he Crapoea *:flr2',

mode, there are both u. and u3'which are an order of magnitude

smaller than u, , but are required in this -.work.. b:ecause rhe aure

thickness behavior is thermally :ompensated for the cut3 of primar,7

interest in this Feto.~ rcrm Eqs. (65), 4irh 7)and 72 o

e.1,we find that to lowest order --n the small wavenumbers along

the Dlate the jisolacement f:.eld -.:r the S reocion may be ,jrittan in

zn " arm



S -rX S
(C16 - c 5 6

i v) si nTX2 -S(X 1 -Z) i-VX 3
+) I 2j 2h

(r r IV (X1- LM
S=[ (  4 (I)S n 12)S nrr -S(l - 3

u A1 cos-ThX + iC 5 Cos K -X e e
2 nr /2h .+ h 2 + cs 2 h 2:

S )S
-(rs 5G )S i) (3)S n-r- iXx

u=lJni A cos - X, +iE Cos 3 X - le e
3 LnT/ 2h + co h 2 + ~ 3 2h

(5. 153

where
n-i (r- (2) + S (2)

oi-l " rc +C1 2 ):- - (r4  + C 5 2 )i' itC ( 2 ) S  = i(- 1) - 12 (r452 i A + ,

+ (2) (ni2h) s in (nrT/2h)

n-i ( E(3) +c S -(r3E (3) +C i7; ) Sn- (r. (~ + )- +5

(2)S 2 5 17 3  5 (I)sE+ =i(-1) " (3) "3 n1/h in:-. , (5.16)]
E+~ E 3)A3 (nr-/ 2h )s in ( .3 nrr/2h )

and r2, r 3 , r, and r5 are defined in Eqs.(60) of Ref.16 while t,

and x 3 are defined in Eqs.(61) 2 and (63)2, respectively, of Ref.16.

It should be noted that the real part of Eqs.(5.15) is understood, and

we have similar expressions for the , T and C regions, which clearly

are too cumbersome to write here. However, we note that since we

have the product of two trigonometric functions in the region, for

that region the entire expressions for the real part for one direction

nust be written out explicitly, thereby resulting in expressions

twdice as long.

The trapped energy solution presented in this section is for

small wavenumbers and v along the plate and small piezoelectric

coupling. Consequently, only the thickness dependence of all elec-

16
trical variables has been retained in the treatment In view of

this and the fact that the solution is referred to the plate axes and



the eigenvector triad of the thickness solution, the perturbation

integral in (2.10) should be written in the more convenient form

H1 = - G + -,l, f f dV°  (5.17)KBNv -,K VgIN 1 2 ,2 f , 2 2

V
0

where

G QQ G' R -- R 5.8
KENv = Qz, G KvNa' R, v (5.18)

and .i is the same as in Section 4. In Eq.(5.17) we have employed

the subscript I for the dominant component of the essentially thick-

ness trapped energy mode of interest in each case because that is in

accordance with the notation used in Ref.16. Consequently, we must

renumber accordingly for each different dominant mode in a given

plate. For the geometry of the trapped energy resonator considered

here from (5.17) we obtain

h b
Hdx dXC( d + (-T+C) dX

I - dX2L d+ )dX, 3

-h o o b

b

+ dXl ' (-S +C) dX + (-C +c,-) dX, (5.19)
X3

o b

where

= C= 2Rf , 2 g - f f  (5.20)

'When the data is available Eqs.(5.19) and (2.9) are to be used

to obtain AR and L' (if not known from other measurements) for
Ia

different trapped energy modes, including thickness overtones, of

different thermally compensated cuts. From the !R obtained from
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different orientations, (5.18)) and (4.13), 2Rill _R17 and .R69 can

readily be obtained. In a similar way from the L! and (4.1), '

and A 33 can readily be obtained. If they are known this can be used

as a check. The values of the elastic constants c I will be refined
2LVMa

using the trapped energy analysis by calculating M and P from the
n n

previous determination of the constants and using Eq. (5.14) to

refine 'EM for the constant in luestion. This will be done for .L!

the modes to refine all the constants. This will be continued

recursivelv until there is no change to a ziven number )f sicnifiuant

digits. Then the piezoelectric constants will be refined from -he

crapped energy analysis if necessary. Finally, redundant checks will

be made on all coefficients.
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TABLE I

CONVENTION FOR THE REPLACEMENT OF TENSOR INDICES BY THE
EXTENDED COMPRESSED MATRIX NOTATION

Lv or
Mv ii 22 33 23 31 12 32 13 21

p or q 1 2 3 4 5 6 7 8 9

46



MISSION~of
Of %

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control.
Communications and Intelligence (CI) activties. Technical and
engineenng support within areas of competence zs provided to

SD Program Offices (POs) and other ES elements to
perform effective acquisition of C31 systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and. electronic
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